Fly and trajectory scans

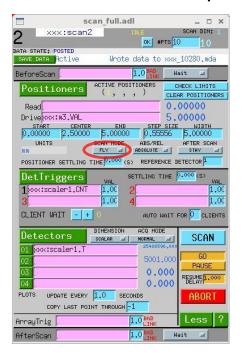
Tim Mooney 2/27/2015

Fly-scan choices

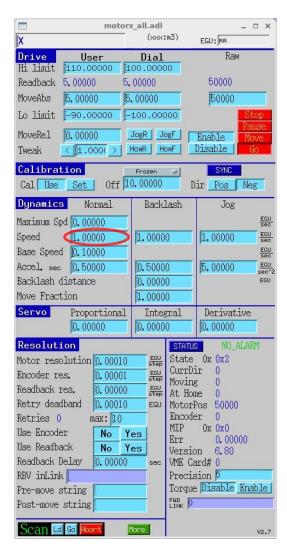
Software fly scan

- Data acquired while positioners move at constant speed
- Detectors triggered by software
 - Periodically, or at user-specified time intervals
- Positions acquired by software along with detector data
- Few-ms dead time between data points
- No cabling required

Hardware fly scan


- Data acquired while positioners move
- Detectors triggered by pulses from positioner
 - Periodically
 - At user-specified positions
- Positions implied or acquired by multichannel scaler
 - Arraycalc "cum" function reconstructs motor positions from scaler data
- No dead time between points
- Need cable from selected motor to selected detector(s)

Hardware fly choices


- Constant speed (from now on, "Hardware fly scan")
 - Positioner moves at constant speed
 - Positioner can be moved by motor record
 - Specify StartPos, EndPos, NPTS, and Speed
 - May be able to specify data-acquisition positions
 - Requires supported motor or external hardware
- Trajectory (from now on, "Trajectory scan")
 - Motor moves along specified trajectory
 - Use trajectory controls
 - Specify trajectory positions and times
 - Specify data-acquisition positions
 - · Details depend on controller
 - Requires supported motor

Software fly scan

- Requirements:
 - positioner speed can be set
 - position updates periodically or on demand
 - scan manager (e.g., sscan record)
- User interface:
 - Differences from step scan

Software fly scan

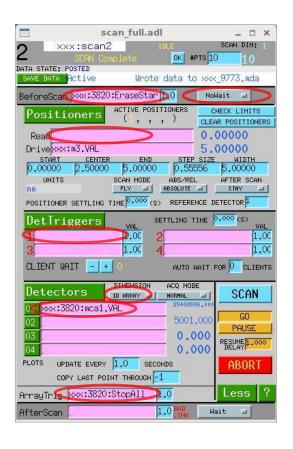
Remarks:

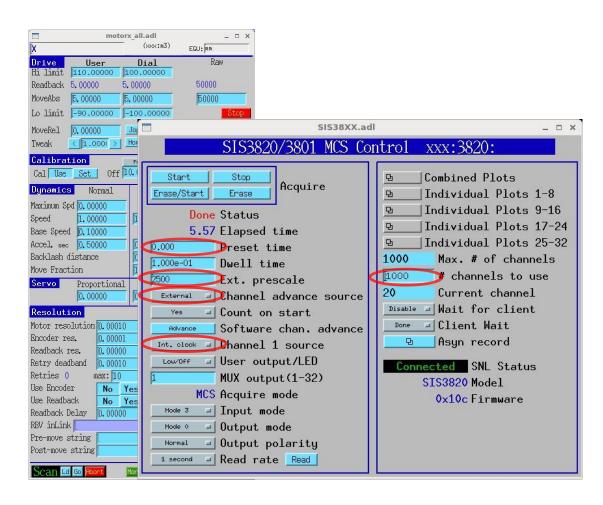
- Positioner speed and detector-dwell time must be set
- Imprecise synchronization between data and recorded positions
- Limited to <~ 10 Hz
- PVs: (values in green: user's choice)

Same as for step scan:

```
$(scan).ACQT = SCALAR
$(scan).P1PV = $(motor).VAL
$(scan).R1PV = $(motor).RBV
$(scan).T1PV = $(scaler).CNT
$(scan).DnnPV = scaler.T
$(scan).P1SP = 0
$(scan).P1EP = 5
$(scan).NPTS = 10
$(scaler).TP = .5
```

Modified for software fly scan:


```
(scan).P1SM = FLY
(motor).VELO = 1.0
```


Hardware fly scan requirements

- Positioner can output pulses during nontrajectory move
 - Any stepper motor (with external divide-by-N)
 - Aerotech Ensemble with EnsemblePSOFly database
 - Probably other servo motors can do this
- Hardware-triggered detector can cache or stream scan data
 - MCS (Struck multichannel scaler)
 - XIA DXP
 - Some cameras
- Data-storage client
 - sscan record (saveData)
 - spec
 - areaDetector plugin

Hardware fly scan

- User interface:
 - Differences from software fly scan:

Hardware fly scan

Remarks:

- positioner speed must be set
- detector must be prepared and started before motor moves

PVs:

Same as for software fly scan:

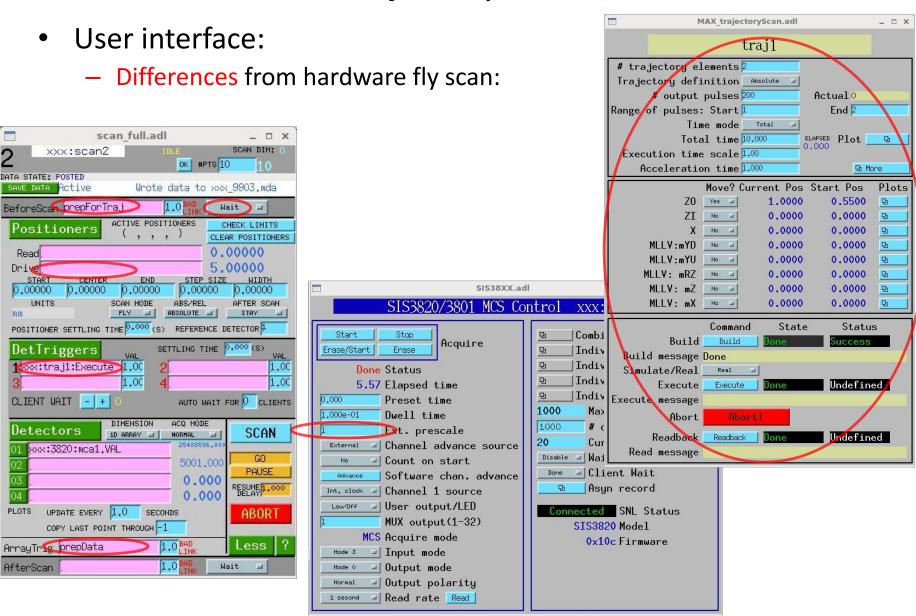
```
$(scan).P1PV = $(motor).VAL
$(scan).P1SM = FLY
```

```
$(scan).P1SP = 0
$(scan).P1EP = 5
$(scan).NPTS = 10
```

(motor).VELO = 1.0

Modified for hardware fly scan:

```
$(scan).ACQT = 1D ARRAY
$(scan).BSPV = $(mcs):EraseStart
$(scan).BSWAIT = NoWait
$(scan).A1PV = $(mcs):StopAll
$(mcs):PresetReal = 0
$(mcs):ChannelAdvance = External
$(mcs):Channel1Source = Int. clock
```


```
$(scan).D01PV = $(mcs):mca1.VAL
$(mcs):Prescale = 2500
$(mcs):CountOnStart = Yes
$(mcs):NuseAll = 1000
```

```
$(scan).R1PV = not used
$(scan).T1PV = not used
```

Trajectory scan requirements

- Controller can move motor along trajectory
 - Newport MM4005 or XPS
 - In motor R6-9, Aerotech Ensemble or Pro-Dex (OMS) MAXv
- Controller can generate position-synchronized pulses
- Position-table generator
 - E.g., spec, arraycalc, python, etc.
- Hardware-triggered detector can cache or stream scan data
 - Same as hardware fly scan
- Data-storage client
 - Same as hardware fly scan

Trajectory scan

Trajectory scan

Remarks:

- Trajectory must be loaded
- Detector must be prepared and started before motor moves

PVs:

Same as for hardware fly scan:

```
(scan).ACQT = 1D ARRAY
```

(mcs):PresetReal = 0

\$(mcs):ChannelAdvance = External

\$(mcs):Channel1Source = Int. clock

(scan).NPTS = 10

(scan).D01PV = (mcs):mca1.VAL

(mcs):NuseAll = 1000

(scan).R1PV = not used

Modified for trajectory scan:

\$(scan).T1PV = \$(traj):Execute

(mcs):Prescale = 1

\$(scan).BSWAIT = Wait

\$(scan).BSPV = prepForTraj

\$(scan).A1PV = prepData

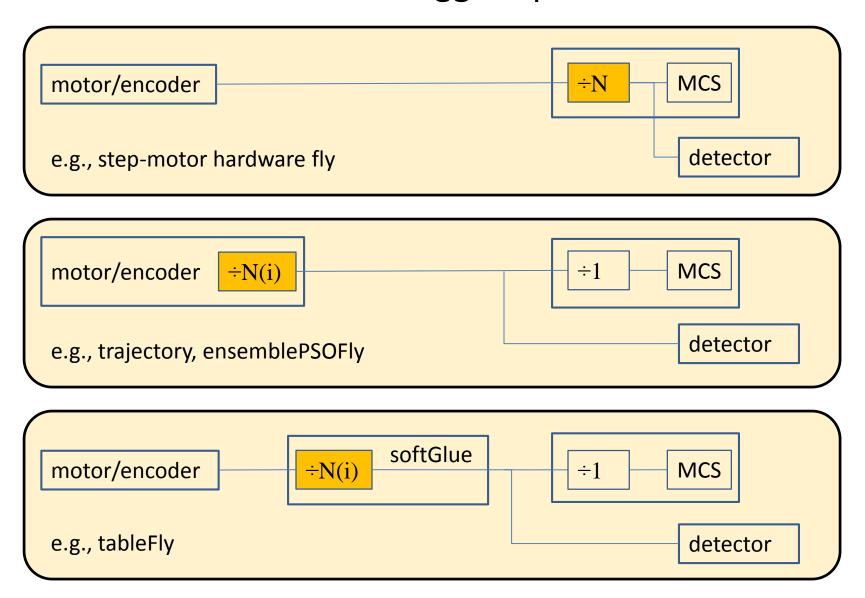
\$(mcs):CountOnStart = No

\$(traj):* = many choices

\$(scan).P1PV = not used

\$(motor).VELO = not used

(scan).P1SP = not used


(scan).P1EP = not used

(scan).P1SM = not used

Trajectory definition

- Number of trajectory elements
- Array of positions for each motor
 - Ensemble: only one motor
- Array of times
 - Can be specified as total time
- Number of output pulses, start/end element
 - MM4005: pulses evenly spaced in distance along trajectory
 - XPS: pulses evenly spaced in time
 - Ensemble: pulses evenly spaced in distance, or at trajectory points
 - Under development: at user-specified positions
 - For MAXv: pulses only at trajectory points
- Absolute/Relative/Hybrid position mode
 - Currently, Ensemble and MAXv don't support Hybrid mode
- MAXv has timing problems in very slow motion

Detector-trigger options

Examples

- 1ide hexFly (hard fly scan)
 - EnsemblePSOfly.db with evenly spaced data-gate signals
- 2bmb, 32idc tomography fly (hard fly scan)
 - EnsemblePSOfly.db with evenly spaced data-trigger signals
- 2bmb interlace fly (hard fly scan)
 - EnsemblePSOfly.db with user-specified data-trigger signals
 - tableFly.db uses softGlue to generate triggers from motor pulses
 - interlaceFly.db programs tableFly
 - Acquire at ~100 Hz for ~30 minutes
- 15idd USAXS fly (trajectory scan)
 - Ensemble and MAXv trajectories with user-specified data-trigger signals
 - Rotation stage (Ensemble) executes exponential trajectory
 - Translation stages (MAXv) execute commensurate trajectories
- Gradient mirror deposition system (trajectory motion)
 - Ensemble trajectory
 - support installed, but not connected to higher-level software

Plans, possibilities

- Database support for "automatic" soft fly scans
- Database/softGlue support for "automatic" hard fly scans
- Ensemble multiple-motor trajectory support
- ID/monochromator fly scan
- Relax ensemblePSOFly motor-config constraints
- Implement Hybrid mode for Ensemble/MAXv trajectory
- Implement Ensemble and MAXv trajectory in model-3 driver